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Abstract Most of the methods that produce space weather forecasts are based on deterministic models.
In order to generate a probabilistic forecast, a model needs to be run several times sampling the input
parameter space, in order to generate an ensemble from which the distribution of outputs can be inferred.
However, ensemble simulations are costly and often preclude the possibility of real-time forecasting. We
introduce a simple and robust method to generate uncertainties from deterministic models, that does
not require ensemble simulations. The method is based on the simple consideration that a probabilistic
forecast needs to be both accurate and well calibrated (reliable). We argue that these two requirements are
equally important, and we introduce the Accuracy-Reliability cost function that quantitatively measures
the trade-off between accuracy and reliability. We then define the optimal uncertainties as the standard
deviation of the Gaussian distribution that minimizes the cost function. We demonstrate that this simple
strategy, implemented here by means of a deep neural network, produces accurate and well-calibrated
forecasts, showing examples both on synthetic and real-world space weather data.

Plain Language Summary We introduce a simple method to calculate the uncertainty
associated with the output of a deterministic model (such as a physics model), and we show how to apply
this method to cases relevant to Space Weather prediction. The details of the deterministic model are not
important and the method can be applied both to empirical or physics-based models.

1. Introduction
The U.S. National Space Weather Action Plan released in October 2015 has fueled interest in so-called
Operations-to-Research activities, which are now explicitly funded by NASA and NOAA programs. An
important element of Operations-to-Research is the enhancement of existing operational models and prod-
ucts with fundamental research. A major weakness of most of the state-of-the-art forecasting models used
by national Space Weather agencies is that they are essentially deterministic. For any given set of input
parameters, they output a single-point estimate, without providing information on the uncertainty asso-
ciated with such an estimate. On the other hand, the Space Weather community is gradually recognizing
the importance of probabilistic forecasts, which have been the standard in meteorological weather forecast
for many years. Indeed, several probabilistic forecasting models have been proposed in the last few years,
concerning solar energetic particles (Aminalragia-Giamini et al., 2018; Kahler & Ling, 2015), geomagnetic
indexes (Chandorkar et al., 2017; Gruet et al., 2018; McPherron & Siscoe, 2004; Riley & Love, 2016; Zhang
& Moldwin, 2014), GPS scintillation (Prikryl et al., 2012), solar flares (Barnes et al., 2007; Bloomfield et al.,
2012; Gallagher et al., 2002; Lee et al., 2012; Papaioannou et al., 2015; Wheatland, 2004), solar wind speed
(Bussy-Virat & Ridley, 2014; Napoletano et al., 2018; Owens & Riley, 2017), and relativistic electron fluxes
(Miyoshi & Kataoka, 2008), among others.

As pointed out in Murray et al. (2017), most operational space weather forecasting centers worldwide still
rely on human forecasters to adjust the issued probability of a given event, based on experience. Yet, a
recent verification of geomagnetic storm and X-ray flare forecasts issued by the Met Office Space Weather
Operations Centre has reported that these forecasts struggle to provide a better prediction than a reference
model and tend to overforecast events (Sharpe & Murray, 2017). Moreover, comparing 11 different meth-
ods to predict flares, Barnes et al. (2016) concluded that no participating method proved substantially better
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than climatological forecasts, for M-class flares and above (a climatological model is one where a long-term
average of the quantity of interest is taken as forecast).

There are two major approaches in producing a probabilistic model. The first way is to apply a statistical
method on historical records, trying to correlate some input parameters with the forecast output. Little or no
physics assumptions enter in such models (other then maybe a judicious choice of input parameters based
on physics). For instance, modern machine learning algorithms, often referred to as black-box models, fall
in this category (Camporeale, Wing, Johnson, et al., 2018; Camporeale, Wing, Johnson, 2018; Ghahramani,
2015; K. P. Murphy, 2012). A second way of producing a probabilistic forecast is based on the use of
physics-based models, which range from (almost) first-principle simulations (e.g., Luhmann et al., 2017), to
semiempirical models (e.g., Möstl et al., 2017). These white-box models are typically deterministic, mean-
ing that they return a single solution for any given set of inputs provided. How to assign a probabilistic
interpretation to such single-point estimates, in a computationally cheap way, is a challenging open prob-
lem which forms the core of a research area called non-intrusive Uncertainty Quantification (Smith, 2013).
Non-intrusive refers to the fact that one employs a deterministic model (and its existing software), and per-
forms an ensemble of simulations, without changing the underlying equations. It is then straightforward
to extract a probabilistic description from the results ensemble. However, this is usually very expensive and
brings the two following problems. First, if the number of inputs is large, one encounters the infamous curse
of dimensionality, namely, the fact that the volume of an hypercube increases exponentially with the number
of dimensions. Hence, sampling the input space with a tensorial grid (i.e., with a given number of points per
dimension) quickly becomes unfeasible, because each grid point corresponds to a single run of a determinis-
tic simulation. For this reason, sampling is often done in a Monte-Carlo fashion (or one of its modifications,
such as Quasi-Monte-Carlo; Caflisch, 1998), which is very robust but also very slow in achieving conver-
gence. Not surprisingly, an active area of research focuses on the design of adaptive sampling algorithms
that yield convergence faster than Monte-Carlo (Babuška et al., 2007; Camporeale et al., 2017; Xiu, 2010;
Xiu & Karniadakis, 2002). The second problem is that the distribution of outputs collected from the ensem-
ble of simulations (the probabilistic forecast) is obtained by mapping, through the nonlinear simulation,
the probability density that is assumed for the input parameters. Any misfit in the distribution of the inputs
propagates to the distribution of outputs, producing misleading results. For this reason, an essential step of
ensemble simulations is the calibration of the model (Kennedy & O'Hagan, 2001), that is the derivation of
the distribution of the input parameters that is most consistent with observations. Calibration can itself be
rather expensive, when it also relies on a large number of simulation runs.

In this paper we introduce a new method to derive a probabilistic forecast based on a deterministic model
that avoids the computational costs associated with collecting an ensemble and with properly calibrating
a computer simulation. Specifically, we introduce a method in which an artificial neural network (ANN)
is trained to predict the spread of a Gaussian probability density function, such that a continuous real
predictand can be replaced by a probabilistic forecast.

1.1. Accuracy and Reliability
This method is based on the simple consideration that a probabilistic forecast needs to be both accurate
and reliable. This is in line with Gneiting et al. (2007), that have proposed to evaluate the performance of a
forecast based on the paradigm of maximizing the sharpness of the predictive distributions subject to cali-
bration. Sharpness refers to the concentration of the predictive distributions and is a property of the forecasts
only. Note that in this paper we refer to calibration and reliability interchangeably, the former term typically
being used in meteorological literature. Following the seminal paper by A. H. Murphy and Winkler (1992),
accuracy is defined as the overall degree to which forecasts correspond to observations. It can be quantified
introducing a proper scoring rule (Bröcker & Smith, 2007), whose examples are the Brier score for binary
events (Brier, 1950), the Rank Probability Score for multicategory events, and its generalization for forecast
of continuous variables, the Continuous Rank Probability Score (CRPS; Hersbach, 2000; Wilks, 2011), that
we will use here. Reliability is the property of a probabilistic model that measures its statistical consistency
with observations. In particular, for forecasts of discrete events, the reliability measures if an event occurs
on average with frequency p, when it has been predicted to occur with probability p. For example, consider
a probabilistic, binary, meteorological model that predicts rain or no-rain. Take a large enough sample of
predictions of “70% chance of rain.” The model is said to be reliable/calibrated if approximately 70% of these
predictions turned out to be true (i.e., it rained) and if this holds for all forecasted probabilities. The same
concept can be extended to forecasts of a continuous scalar quantity by examining the so-called rank his-
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togram (Anderson, 1996; Hamill, 1997, 2001) or the reliability diagram (Pinson et al., 2010). A reliability
diagram represents, for any value of probability predicted for a given output, what is the actual observed
frequency for that output (i.e., How many times did it rain, when 70% chance of rain was predicted? More
(underconfident), less (overconfident), or exactly 70% of the time?). In the case of continuous variables, the
reliability diagram is obtained with the following straightforward procedure. One collects a (large) number
of pairs observations-predictions (the former being a real number, the latter a probability density). For each
observation, one computes what was the probability that was assigned to the outcome being less or equal
than the observed outcome. In the case of Gaussian predictions, this is simply the cumulative distribution
function P(𝑦) = 1

2

[
erf

(
𝑦−𝜇√

2𝜎

)
+ 1

]
, where y is the observed outcome, 𝜇 is mean of the predicted normal

distribution, and 𝜎 is standard deviation. Once the list of all these probabilities is computed, the empirical
distribution function associated to such list represents the reliability diagram. Once plotted, the range of
assigned probabilities (from 0 to 1) is on the horizontal axis, and the frequency with which events occur,
for each given assigned probability, is on the vertical axis. A perfectly calibrated model results in the reli-
ability diagram following a straight diagonal line, while overconfident or underconfident predictions lie,
respectively, below or above the diagonal line.

In any decision-making scenario, reliability is as important as accuracy: A nonreliable model (either because
overconfident or underconfident) introduces a systematic bias which is hard to account for. In summary,
reliability gives a quantitative measure of how consistently trustworthy (reliable, in common language) a
predictive model is.

1.2. Proposed Strategy
The key to our approach is using a large set of model errors, defined as the difference between the prediction
and the observation, to generate a predictive model of the standard deviation of the probabilistic forecast.
In the simple case of a deterministic model with an input vector [x1, x2, … , xn] we build a model to pre-
dict 𝜎([x1, x2, … , xn]) so that we can specify a Gaussian PDF instead of the single deterministic value. This
method is very general and decoupled from any particular choice for the model that predicts the output tar-
gets, which can lie anywhere in the range from white to black-box models, as long as the quantity of interest
is real and continuous. Indeed, in the following we will assume that such a model, whose details are not
important, is provided.

It is important to emphasize that the scope of this work is not to reduce the errors associated with the model,
but to estimate the uncertainty of its output, thus generating a probabilistic forecast based on a determinis-
tic model. The probabilistic forecast is designed to be a Gaussian probability distribution centered around
the values produced by the model. In this way, the only unknown quantity is the variance of the Gaussian
distribution. The simple strategy proposed here is to estimate this unknown variance (which is in gen-
eral a function of the model inputs) by enforcing it to be a minimizer of a newly introduced cost function,
which encodes a trade-off between accuracy and reliability, and that we call Accuracy-Reliability (AR) cost
function. As we will show, when interpreted as a function of the variance (or its square root, the standard
deviation), for fixed errors (the difference between model output and observed values), accuracy and relia-
bility are competing objectives. This gives rise to a two-objective optimization problem and the well-known
Pareto curve (Branke et al., 2008). This curve defines a boundary on which any further optimization of one
objective (e.g., a better accuracy) results in worsening of the other objective (e.g., a worse reliability).

Although our method is essentially a multidimensional optimization problem, we require the ability to
obtain an optimal value of the standard deviation 𝜎 for any set of values of model inputs and to ensure that
𝜎 is a smooth function of the inputs. While, in principle, standard algorithms like Newton or quasi-Newton
methods could be used to directly solve the optimization problem, they would lead to the predicted stan-
dard deviation being a nonsmooth function of the inputs, and it would not be easy to generalize the results
to unseen inputs. Therefore, we use an ANN that is trained on a given sample of model errors, for which
the ground truth is known (that is, the true output of interest, not the true variance, that remains a latent
variable).

Hence, our method reduces to a straightforward implementation of an ANN that outputs the standard devi-
ation (as a function of the inputs) that minimizes the AR cost function. As a general strategy (and the one
used in all of our examples), one can use the same inputs used by the deterministic model in the neural net-
work. If some additional information is known about latent variables z, then other inputs can be used; the
ANN could be trained using an input vector x = [x1, x2, … , xn, z1, … , zm].
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Figure 1. Lines of constant CRPS in (𝜎, 𝜀). The value of CRPS is indicated on the isolines. The black dashed line shows
the location of 𝜎min (i.e., the smallest CRPS for a given 𝜀). CRPS = Continuous Rank Probability Score.

The paper is organized as follows. Section 2 introduces the mathematical background, the AR cost function,
and it explains the methodology to derive the unknown uncertainties. Section 3 demonstrates the use of our
methods for synthetic data and real-world examples relevant to space weather forecasting are presented in
sections 4 and 5. Finally, conclusions are drawn in section 6.

2. Methodology
In this section we introduce and discuss the Continuous Rank Probability Score, which is widely used in
many applications (Matheson & Winkler, 1976), and the new Reliability Cost for Gaussian forecasts.

2.1. Continuous Rank Probability Score (CRPS)
The CRPS is a generalization of the well-known Brier score (Wilks, 2011), used to assess the probabilistic
forecast of continuous scalar variables, when the forecast is given in terms of a probability density function,
or its cumulative distribution. CRPS is defined as

CRPS = ∫
∞

−∞

[
P(𝑦) − H(𝑦 − 𝑦o)

]2d𝑦, (1)

where P(y) is the cumulative distribution (CDF) of the forecast, H(y) is the Heaviside function, and yo is the
true (observed) value of the forecasted variable. CRPS is a negatively oriented score: it is unbounded and
equal to zero for a perfect forecast with no uncertainty (deterministic).

In this paper we restrict our attention to the case of probabilistic forecast in the form of Gaussian distribu-
tions. Hence, a forecast is simply given by the mean value 𝜇 and the variance 𝜎2 of a Normal distribution.
In this case P(𝑦) = 1

2

[
erf

(
𝑦−𝜇√

2𝜎

)
+ 1

]
and the CRPS can be calculated analytically (Gneiting et al., 2005) as

CRPS(𝜇, 𝜎, 𝑦o) = 𝜎

[
𝑦o − 𝜇

𝜎
erf

(
𝑦o − 𝜇√

2𝜎

)
+
√

2
𝜋

exp
(
−(𝑦o − 𝜇)2

2𝜎2

)
− 1√

𝜋

]
. (2)

Several interesting properties of the CRPS have been studied in the literature. Notably, its decomposition
into reliability and uncertainty has been shown in Hersbach (2000). The CRPS has the same unit as the
variable of interest, and it collapses to the Absolute Error |yo − 𝜇| for 𝜎 → 0, that is when the forecast
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Figure 2. Circles: 200 points sampled from the G, Y, W data set (top, middle, bottom, respectively). The red line shows
the mean function f(x).

becomes deterministic. CRPS is defined for a single instance of forecast and observation, hence it is usu-
ally averaged over an ensemble of predictions of size N, to obtain the score relative to a given model:
CRPS =

∑
kCRPS(𝜇k, 𝜎k, 𝑦

o
k)∕N. Since we are approaching the problem of variance estimation by assigning

an empirical variance to predictions originally made as single-point estimates, it makes sense to minimize
the CRPS as a function of 𝜎 only, for a fixed value of the error 𝜀 = yo − 𝜇. By differentiating equation (2)
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with respect to 𝜎, one obtains
dCRPS

d𝜎
=
√

2
𝜋

exp
(
− 𝜀2

2𝜎2

)
− 1√

𝜋
(3)

and the minimizer is found to be

𝜎CRPS
min = 𝜀√

log 2
. (4)

The CRPS penalizes underconfident and overconfident predictions in a nontrivial way. Indeed, for any value
of the error 𝜀, there are always two values of𝜎 (one smaller and one larger than𝜎min, that is one overconfident
and the other underconfident) that yield the same CRPS. We show in Figure 1 the isolines of CRPS in (𝜎, 𝜀)
space. The black dashed line indicates 𝜎min. From this figure it is clear how a smaller error 𝜀 (for constant
𝜎) always results in a smaller (better) score, but the same score can be achieved by changing both the error 𝜀
and the standard deviation 𝜎. A straightforward way of understanding how CRPS works is the following. Let
us start with a prediction that has a given error 𝜀 and no uncertainty (i.e., a deterministic forecast, 𝜎 = 0).
CRPS attributes a certain score to such prediction. Now, if we increase 𝜀 the prediction becomes obviously
worse, hence CRPS increases, unless we simultaneously increase the uncertainty 𝜎. That is, accounting for
the fact that the prediction is uncertain compensates for a larger error. In this way one can move along a
constant CRPS curve, until the point (on the dashed line) where an increase in error cannot be compensated
any further by an increase in uncertainty. After that point, larger uncertainties must then be compensated
by a decrease in the error 𝜀.

2.2. Reliability Score for Gaussian Forecast
Contrary to the CRPS, that is defined for a single pair of forecast-observation, it is clear that reliability can
only be defined for a large enough ensemble of such pairs, being a statistical property of a model. We define
the standardized errors 𝜂i as

𝜂i = 𝜀i∕(
√

2𝜎i), (5)

where the standard deviations 𝜎i are determined by the input vector. If 𝜎(x) is not constant then this def-
inition acts to both standardize and transform the error distribution. While the forecast errors 𝜀i may not
be Gaussian, in the case of a normally distributed forecast we expect 𝜂 calculated over a sample of N
prediction-observation pairs to follow a standard normal distribution with CDF Φ(𝜂) = 1

2
(erf(𝜂)+1). Hence,

we define the Reliability Score (RS) as

RS = ∫
∞

−∞

[
Φ(𝑦) − C𝜂(𝑦)

]2d𝑦, (6)

where C𝜂(y) is the empirical cumulative distribution of the standardized errors 𝜂, that is

C𝜂(𝑦) =
1
N

N∑
i=1

H(𝑦 − 𝜂i) (7)

with 𝜂i = (𝑦o
i − 𝜇i)∕(

√
2𝜎i).

RS measures the divergence of the empirical distribution of standardized errors 𝜂 from a standard normal
distribution. Note that, by appropriately choosing 𝜎, one can always obtain a distribution of 𝜂 that approxi-
mates a standard normal distribution, irrespective of the distribution of the errors 𝜀, as long as the number
of instances of 𝜀 < 0 and 𝜀 > 0 are approximately equal.

From now on we will use the convention that the set 𝜂 = {𝜂1, 𝜂2, … 𝜂N} is sorted (𝜂i ≤ 𝜂i + 1). This does not
imply that 𝜇i or 𝜎i are sorted as well. Interestingly, the integral in equation (6) can be calculated analytically,
via expansion into a telescopic series, yielding:

RS =
N∑

i=1

[
𝜂i

N
(
erf(𝜂i) + 1

)
−

𝜂i

N2 (2i − 1) +
exp(−𝜂2

i )√
𝜋N

]
− 1

2

√
2
𝜋
. (8)

Differentiating now the ith term of the above summation, RSi, with respect to 𝜎i (for fixed 𝜀i), one obtains
dRSi

d𝜎i
=

𝜂i

N𝜎i

(2i − 1
N

− erf(𝜂i) − 1
)
, (9)
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Figure 3. Distribution of true values of standard deviation 𝜎 for the 5-D data set.

which is minimized at the value 𝜎RS
min that satisfies

erf

(
𝜀i√

2𝜎RS
min

)
= 2i − 1

N
− 1. (10)

This could have been trivially derived by realizing that by minimizing RS one obtains the distribution of
standardized errors 𝜂i that most closely approximates a standard normal distribution, for a given number
of observations N. This is the distribution that mapped through Φ divides uniformly the interval [0, 1]:
1
2
(erf(𝜂i) + 1) = i−1∕2

N
, that is, the set { 1

2N
,

1
2N

+ 1
N
,

1
2N

+ 2
N
, … , 1 − 1

2N
}. Like CRPS, RS is negatively oriented

(i.e., zero is the perfect score). It can be equal to zero only for N → ∞.

2.3. The AR Cost Function
The AR cost function introduced here follows from the simple principle that the empirical standard devia-
tions 𝜎i estimated from an ensemble of errors 𝜀i should result in a model that is both accurate (with respect
to the CRPS score) and reliable (with respect to the RS score). This gives rise to a two-objective optimiza-
tion problem. It is trivial to verify that CRPS and RS cannot simultaneously attain their minimum value (for
fixed errors 𝜀i). Note that CRPS is a function of 𝜀i and 𝜎i, while RS is only a function of their scaled ratio
𝜂i = 𝜀i∕(

√
2𝜎i). By minimizing the CRPS, 𝜂i =

1
2

√
log 4 for any i (see equation (4)). Obviously, a constant

𝜂i cannot result in a minimum also for RS, according to equation (10). Moreover, notice that trying to mini-
mize RS as a function of 𝜎i (for fixed errors 𝜀i) results in an ill-posed problem, because one can have infinite
combinations of 𝜎i that result in the same set 𝜂, therefore there is no unique solution for the standard devia-
tions that minimizes RS. Hence, RS can be thought of as a regularization term in the AR cost function. The
simplest strategy to deal with multiobjective optimization problems is to scalarize the cost function, which
we define here as

AR = 𝛽 · CRPS + (1 − 𝛽)RS. (11)

We choose the scaling factor 𝛽 as

𝛽 = RSmin∕(CRPSmin + RSmin). (12)

The minimum of CRPS is CRPSmin =
√

log 4
2N

∑N
i=1 𝜀i, which is simply the mean of the errors, rescaled by a

constant. The minimum of RS follows from equations (8) and (10):

RSmin = 1√
𝜋N

N∑
i=1

exp
(
−
[
erf−1

(2i − 1
N

− 1
)]2)

− 1
2

√
2
𝜋
. (13)
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Figure 4. Results for the G data set. Values derived for the standard deviation 𝜎, averaged over 200 independent runs
(black), compared to the ground truth values used to generate the data (in red). The shaded gray area represents the
confidence intervals of one (dark gray) and two (light gray) standard deviations calculated over the ensemble of 200
runs. (top) The correct mean function f(x) is used for the model; (middle) a misspecified model that uses 1.5f(x) as
mean; (bottom) a misspecified model that uses f(x) + 0.5 as mean.

Notice that RSmin is only a function of the size of the sample N, and it converges to zero for N → ∞. The
heuristic choice in equation (12) is justified by the fact that the two scores might have different orders of
magnitude, and therefore we rescale them in such a way that they are comparable in our cost function (11).
Indeed, the scaling factor 𝛽 ensure that the two terms would be exactly equal if both could be minimized
simultaneously. We believe this to be a sensible choice, although there might be applications where one
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Figure 5. Reliability diagram for the method applied to the G data set. Blue, red, and yellow lines denote the observed
frequency as function of the predicted probability, for the cases of correct mean function f(x), and misspecified models
1.5f(x) and f(x) + 0.5, respectively. A perfect reliability is shown as a black dashed line.

would like to weigh the two scores differently. Also, in our practical implementation, we neglect the last
constant term in the definition (8) so that, for sufficiently large N, RSmin ≃ 1

2

√
2
𝜋
≃ 0.4.

2.4. Neural Network
In summary, we want to estimate the input-dependent values of the empirical standard deviations 𝜎i
associated to a sample of N observations for which we know the errors 𝜀i. We do so by solving a multidi-
mensional optimization problem in which the set of estimated 𝜎i minimizes the AR cost function defined
in equation (11).

This newly introduced cost function has a straightforward interpretation as the trade-off between accu-
racy and reliability, which are two essential but conflicting properties. In practice, we want to generate a
model that is able to predict 𝜎 as a function of the inputs x on any point of a domain. This unknown func-
tion can in general be nonlinear, and we assume no a priori information to constraint its functional form.
However, we want to enforce smoothness of the unknown variance, to some degree. A very general strat-
egy is to use a regularized ANN to model the dependency of 𝜎 as a function of the inputs. However, it is
important to realize that this is not the only choice, and in case the user has some prior information on
the functional form of 𝜎, other strategies (such as polynomial regression, if the input is low-dimensional)
might be better suited. For simplicity, we choose a single neural network architecture, that we use for all
the tests. We use a network with two hidden layers, respectively, with 20 and 5 neurons. The activation
functions are tanh and a symmetric saturating linear function, respectively. The third (output) layer uses a
linear activation function. The data set, composed of the inputs x and the corresponding observed errors 𝜀,
is randomly divided into training (70%) and validation (30%) sets. The network is trained using a standard
Broyden-Fletcher-Goldfarb-Shanno quasi-Newton algorithm, and the iterations are forcefully stopped when
the loss function does not decrease for 10 successive iterations on the validation set. These are all standard
choices when training neural networks, and we refer the reader to specific monographs (e.g., Bishop, 1995).

A very attractive feature of our model is that the only inputs needed are the input parameters xi and the
corresponding errors 𝜀i (used for training only). The neural network outputs the values of log(𝜎i), by mini-
mizing the above-introduced AR cost function, equation (11), where 𝜎(x) is the standard deviation, and log
is used to enforce its positivity. In order to limit the expressive power and avoid overfitting, we may add a reg-
ularization term equal to the L2 norm of the weights to the AR cost function, multiplied by a constant factor
0.2. In other words, a term 0.2 wT w

2
can be added to the AR cost function defined in equation (11), where the

vector w represents the Neural Network weights. This is a standard procedure to constrain the amplitude
of the weights and avoid overfitting (because highly nonlinear functions tend to increase the regularization
term; see, e.g., Carè & Camporeale, 2018). In our numerical experiments (section 3) this regularization term
was needed only for 1-D cases. Finally, in order to avoid local minima due to the random initialization of
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Figure 6. Results for the Y data set. Values derived for the standard deviation 𝜎, averaged over 200 independent runs
(black), compared to the ground truth values used to generate the data (in red). The shaded gray area represents the
confidence intervals of one (dark gray) and two (light gray) standard deviations calculated over the ensemble of 200
runs. (top) The correct mean function f(x) is used for the model; (middle) a misspecified model that uses 1.5f(x) as
mean; (bottom) a misspecified model that uses f(x) + 0.5 as mean.

the neural network weights, we train five independent networks and choose the one that yields the smallest
value of the cost function.

3. Experiments With Synthetic Data
In this section we show some experiments on synthetic data to demonstrate the ease, robustness, and
accuracy of the presented method to derive uncertainties. Here, we assume to have an imperfect model
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Figure 7. Reliability diagram for the method applied to the Y data set. Blue, red, and yellow lines denote the observed
frequency as function of the predicted probability, for the cases of correct mean function f(x), and misspecified models
1.5f(x) and f(x) + 0.5, respectively. A perfect reliability is shown as a black dashed line.

that produces a forecast y = f(x). The synthetic observations are generated from a Gaussian distribution
 (𝑓 (x), 𝜎(x)2), with known variance 𝜎(x)2. The stochastic nature of the synthetic data can be thought to
mimic the existence of latent variables that are not included in the model. In other words, close values of the
input x can results in very different outputs, because of unmodeled processes. The purpose of these experi-
ments is to show that our method is capable of recovering the functional dependence of the variance 𝜎(x)2,
that is, for real data, unknown. We choose some of the data sets routinely used in machine learning litera-
ture (Kersting et al., 2007). The first three data sets are one-dimensional in x, while in the fourth we will test
the method on a five-dimensional space, thus showing the robustness of the proposed strategy.

G data set: x ∈ [0, 1], 𝑓 (x) = 2 sin(2𝜋x), 𝜎(x) = x + 1
2

(Goldberg et al., 1998).
Y data set: x ∈ [0, 1], 𝑓 (x) = 2(exp(−30(x − 0.25)2) + sin(𝜋x2)) − 2, 𝜎(x) = exp(sin(2𝜋x)) (Yuan & Wahba,

2004).
W data set: x ∈ [0, 𝜋], 𝑓 (x) = sin(2.5x) sin(1.5x), 𝜎(x) = 0.01 + 0.25(1 − sin(2.5x))2 (Nix & Weigend, 1994;

Williams, 1996).

Examples of 200 points sampled from the G, Y, and W data sets are shown in Figure 2 along with their mean
function f(x) in red.

For the G, Y, and W data sets we test the case where the true mean function f(x) is used as deterministic
model, and two cases where the model suffers of a systematic bias and the model output is replaced by 3

2
𝑓 (x)

(a multiplicative error) or 𝑓 (x)+ 1
2

(an additive error). These two cases serve also the purpose of studying the
behavior of the proposed method for non-Gaussian errors. Every model is trained on 100 points uniformly
sampled in the domain.

5-D data set: x ∈ [0, 1]5, 𝑓 (x) = 0, 𝜎(x) = 0.45(cos(𝜋 +
∑5

i=1 5xi) + 1.2) (Genz, 1984). Figure 3 shows the
distribution of 𝜎, which ranges in the interval [0.09, 0.99].

The 5-D data set is obviously more challenging, hence we use 10,000 points to train the model (note that
this results in fewer points per dimension, compared to the one-dimensional tests). For all experiments we
test 200 independent runs.

The results for the G data set are shown in Figure 4. The values derived for the standard deviation 𝜎, averaged
over 200 independent runs are shown in black, compared to the ground truth value used to generate the data
(in red). The shaded gray area represents the confidence intervals of one (dark gray) and two (light gray)
standard deviations calculated over the ensemble of 200 runs. The top, middle, and bottom panels show the
results when the model uses the exact mean function used to generate the data f(x) and when the model is
misspecified by a multiplicative error (1.5f(x)), or an additive error (f(x) + 0.5), respectively. One can notice
that our method is capable of recovering almost exactly the true variance (top), when the model is accurate.
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Figure 8. Results for the W data set. Values derived for the standard deviation 𝜎, averaged over 200 independent runs
(black), compared to the ground truth values used to generate the data (in red). The shaded gray area represents the
confidence intervals of one (dark gray) and two (light gray) standard deviations calculated over the ensemble of 200
runs. (top) the correct mean function f(x) is used for the model; (middle) a misspecified model that uses 1.5f(x) as
mean; (bottom) a misspecified model that uses f(x) + 0.5 as mean.

On the other hand, when the model is misspecified (and the errors become non-Gaussian) the method
appropriately assigns a larger uncertainty (middle and bottom panels). In particular, it is interesting that the
discrepancy between the true variance and the one derived by this method is larger when the true variance is
small. This is because in the regions with small (true) variance a misspecified model (mean function) causes
a larger departure from Gaussianity. Since the method is designed to assign anyway a Gaussian probability
density, it necessarily results in a larger uncertainty. Nevertheless, using the AR cost function as criterion to
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Figure 9. Reliability diagram for the method applied to the W data set. Blue, red, and yellow lines denote the observed
frequency as function of the predicted probability, for the cases of correct mean function f(x), and misspecified models
1.5f(x) and f(x) + 0.5, respectively. A perfect reliability is shown as a black dashed line.

derive the empirical variance will always results in an optimally calibrated model, meaning that ill-calibrated
results are very unlikely, unless the underlying mean function is very off from the appropriate value. Figure 5
shows the reliability diagram for the three cases discussed (exact model and misspecified models). Once
again, a reliability diagram represents, for any value of probability predicted for a given output, what is the
actual observed frequency for that output (calculated on a large sample). A perfectly calibrated model results
in a reliability diagram following the straight diagonal line (dashed black).

Not surprisingly, when we use the exact model as our mean function (blue line), the empirical variance
derived with our method result in a perfectly calibrated model that indeed follow very closely the diagonal
line (dashed black). When the model is misspecified (red and yellow lines), the method tries to achieve a
trade-off between reliability and accuracy. The resulted reliability is still very good even though not perfect.
It is very interesting that the reliability diagram can be used for our method to detect a misspecified mean
function. Indeed, it is important to point out that, for the G data set, the model with additive error is worse

Figure 10. Probability density of the prediction versus real values of 𝜎 for the 5-D data set. The red line denotes perfect
prediction. The densities are normalized to have maximum value along each column equal to one. The 10,000,000
samples have been used to generate the plot (with a training set of 10,000 points).
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Figure 11. Density histogram of the DEN2D model errors (in logarithmic scale). The red line indicates a Gaussian fit.

than the one with multiplicative error, because f(x) goes through zero in three points in the domain (hence,
the multiplicative error plays no role in those points).

Results for the Y data sets are shown in Figures 6 and 7, with same format as previous Figures. Conclusions
are very similar, with the main difference that the Y data set has a nonlinear true variance, which is harder
to learn. Nevertheless, our method provides a good estimate of it. The W model is the most challenging, as
shown in Figures 8 and 9. Here, a misspecification of the model becomes readily evident, producing almost
constant variance and large errors in the reliability diagram.

For the 5-D data set it is impractical to compare graphically the real and estimated 𝜎(x) in the
five-dimensional domain. Instead, in Figure 10 we show the probability density of the real versus predicted
values of the standard deviation. Values are normalized such that the maximum value in the colormap for
any value of predicted 𝜎 is equal to one (i.e., along vertical lines). The red line shows a perfect prediction.
The colormap has been generated by 10,000,000 points, while the model has been trained with 10,000 points
only. For this case, we have used an exact mean function (equal to zero), in order to focus exclusively on the
estimation of the variance. We believe that this is an excellent result for a very challenging task, given the
sparsity of the training set, that shows the robustness of the method.

Figure 12. Reliability diagram of the probabilistic estimate of electron density, using the DEN2D model as mean
function. The black dashed line indicates perfect reliability.
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Figure 13. DEN2D model. Two-dimensional histogram of standard deviation 𝜎 versus L. The number of counts are
normalized column-wise: the maximum for each value of L is equal to 1. The black dashed line follows the peak of the
distribution as function of L.

4. Estimation of Electron Density in the Plasmasphere (DEN2D)
In this and the next section we show applications of our method that are relevant to Space Weather. The first
example is the estimation of the electron plasma density in the plasmasphere. Chu et al. (2017) have devised
a neural network model, DEN2D, that takes as inputs the time history of the SYM-H and AL geomagnetic
indexes, and of F10.7 (solar radio flux), and outputs the logarithm of the electron density at any location
in the plasmasphere, as function of magnetic shell (L), and magnetic local time (MLT), at near-equatorial
latitudes. DEN2D was trained and tested on about 400,000 events generated by 4 years of THEMIS data
(June 2008 to December 2012), using 178 input attributes. It outputs the logarithmic value of the electron
density. Obviously, DEN2D is a deterministic model, that outputs a single value for any given combinations
of inputs. Hence, this model is very well posed for the method introduced in this paper. In this case we train
our ANN to predict 𝜎(x) using the same input vector x as DEN2D.

Moreover, a recent study performed to evaluate the propagation of uncertainties in radiation belt ensemble
simulations has shown that the uncertainty in the electron density estimation carries most of the variance
of the predicted electron fluxes (Camporeale et al., 2016). Therefore, the reduction of the uncertainty for
electron density is a necessary step for developing reliable forecasts of electron fluxes. Figure 11 shows the
distribution of the error of the NN output with respect to the true (log) electron density, calculated over the

Figure 14. DEN2D model. Two-dimensional histogram of errors versus L. The number of counts are normalized
column-wise: the maximum for each value of L is equal to 1. The black dashed line follows the peak of the distribution
as function of L.
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Figure 15. DEN2D model. A series of panels showing the estimated electron density (in color) and the associated
standard deviation 𝜎 (as isolines) for the event of 4 February 2011, as function of L and MLT. The heat map represents
the logarithm of the electron number density in el/cc (see Figure 6 in Chu et al., 2017).

whole data set. The superimposed red line shows a Gaussian fit to the distribution, which has a slighter larger
variance. It is important, however, to keep in mind that our method does not assume that the model errors
are normally distributed. Indeed, the method will try to enforce that the standardized errors 𝜂 are Gaussian,
which can be achieved even for non-Gaussian errors 𝜀. This is well demonstrated by the reliability diagram,
which is shown in Figure 12. Our method applied to the DEN2D model produces a probabilistic estimate
of electron density that has remarkably good reliability. In other words, our method allows to estimate the
Gaussian forecast, for any given distribution of errors, that produces an optimal trade-off between accuracy
and reliability.

Once we have trained our model to estimate the standard deviation 𝜎 as function of the same inputs used
in DEN2D, one can seek for evident relationship between 𝜎 and any of the inputs. This is in general non-
trivial, given that the model takes 178 inputs. Indeed, the only evident correlation exists with the value of
the magnetic L-shell. Figure 13 shows the two-dimensional histogram of L and 𝜎. The number of counts are

Figure 16. Density histogram of the errors of the model by Agapitov et al. (2018; in logarithmic scale). The Gaussian fit
is shown in red.
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Figure 17. Reliability diagram for the probabilistic estimate of the chorus wave amplitude, based on the Agapitov et al.
(2018) model. The black dashed line indicates perfect reliability.

normalized column-wise, that is for every value of L the maximum is set equal to 1. The black dashed line
follows the maximum number of counts as function of L. The uncertainty of the density estimation increases
with increasing L, reaching a maximum for L ∼ 6. This is consistent with the distribution of errors, when
ordered as function of L (Figure 3 in Chu et al., 2017), reproduced here in Figure 14, with the same format as
before. Even though the mean value remains centered around zero, the spread of the errors increases with
increasing L, hence resulting in larger uncertainties. We conclude this section by reproducing the result
shown in Figure 6 of Chu et al. (2017), where the authors have applied the DEN2D model to the moderate
storm of 4 February 2011. Figure 15 reproduces the estimated electron density at six different times, ranging
from the quite time before the storm to the recovery phase after the storm. The color bar indicates the (log)
electron density. Superimposed to each image we show the isolines of the standard deviation calculated with
our new method. It is interesting to notice how 𝜎 is as dynamic as the electron density. Being derived from
the DEN2D model, the uncertainty is itself dependent on the time history of geomagnetic indexes and on
geographical location.

5. Estimation of Chorus Wave Amplitude
Whistler-mode chorus waves play a crucial role for wave-particles interaction and particles scattering in the
inner magnetosphere (Camporeale, 2015; Camporeale & Zimbardo, 2015; Thorne, 2010). The estimation of
the wave amplitude is an important step in the calculation of pitch angle and energy diffusion by means of
quasi-linear Fokker-Planck equations. Recently, Agapitov et al. (2018) have presented an empirical model to
estimate the chorus wave amplitude and wave normal angle distribution, derived from the statistical analysis
of Cluster and Van Allen Probes VLF measurements. The model takes as inputs the MLT, the magnetic
latitude 𝜆, the value of the L-shell, and the geomagnetic index Kp (or Dst Agapitov et al., 2015) providing

Figure 18. The standard deviation 𝜎 estimated for the Agapitov et al. (2018) model (chorus wave amplitude), for three
different ranges of the geomagnetic index Kp, as a function of different magnetic local time and L shells.
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Figure 19. Agapitov et al. (2018) model (chorus wave amplitude). Two-dimensional histogram of standard deviation 𝜎

as function of MLT. The number of counts are normalized column-wise: the maximum for each value of MLT is equal
to 1. MLT = magnetic local time.

the distribution of chorus wave amplitude and wave normal angle in the outer radiation belt (from the
plasmapause to L = 7) for all MLT values in the latitudinal range from−45◦ to 45◦. The model was developed
in the polynomial form for chorus wave amplitude Bw(𝜆,Kp) = ai𝑗𝜆

iKi
p (i, 𝑗 = 0, 3) with the coefficients

calculated based on Cluster STAFF-SA measurements in 2001–2011 (Agapitov et al., 2015) and with the
coefficients updated making use of the combined Cluster observations and the recent Van Allen Probes VLF
measurements (Agapitov et al., 2018). In order to apply our new method to the model of Agapitov et al.
(2018), we have produced an estimation of the chorus wave amplitude for the period 1 January 2015 to 30
December 2016, at 1-min resolution at the corresponding location of the Van Allen Probes spacecraft and
the corresponding level of the geomagnetic activity. The ground truth value is taken directly from the Van
Allen Probes EMFISIS observations. Note that this time interval was not included in the original training of
the model. This produced a total of 213,937 data points for which the model error was calculated. Since the
wave amplitude can range within two orders of magnitude, the errors are in log scale.

Figure 16 shows the histogram of the model error (computed as the difference between the logarithm of
predictions and observations), compared with its Gaussian fit. Similarly to the model discussed in the pre-
vious section, this model does not yield errors that are exactly log-normal distributed. This, however, does
not affect the goodness of our uncertainty estimate, in terms of accuracy and reliability. As previously, we
train our algorithm to estimate the standard deviation 𝜎(x) using the same inputs as the original model. The
reliability diagram, calculated over the entire data set, is shown in Figure 17. The largest mismatch, for a
predicted probability equal to 50%, is about 7%, hence demonstrating that the model is very well calibrated.
Figure 18 shows the heat map of the standard deviation 𝜎 at different locations 4 < L < 6.5, and for differ-
ent ranges of the geomagnetic index Kp (left panel: Kp = [0 − 1]; center panel: Kp = [3 − 4]; right panel:
Kp = [5 − 6]). Not surprisingly, the largest uncertainties occur during storm-time, and in the pre-noon sec-
tor. Finally, Figure 19 shows the two-dimensional histogram of the standard deviation 𝜎, as function of the
MLT. A column-wise normalization is applied, such that the maximum value along a constant MLT is equal
to one. Consistently with the previous Figure, the largest uncertainties occur for MLT in the range 0–10.

6. Conclusions
The estimation of uncertainties associated with the output of deterministic models is a key element of any
forecasting method. The standard approach for evaluating such uncertainties is to rely on time-consuming
ensemble simulations. In this paper, we have introduced a novel methodology to estimate uncertainties
that does not require running costly ensembles. The guiding principle behind our method is that the uncer-
tainty of the output distribution, here represented by the standard deviation of a Gaussian centered around
the values predicted by the deterministic model, should produce a probabilistic forecast that is both accu-
rate and reliable (well calibrated). We have introduced a cost function that encodes the trade-off between
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accuracy and reliability for Gaussian distributions. The minimization of such AR cost function yields the
optimal standard deviation 𝜎(x). The proposed method is ignorant with respect to the deterministic model
it is applied to. In fact, it only requires the algebraic errors between predictions and true values, in order to
be trained. A deep neural network is used to generate the unknown standard deviation for inputs other than
the ones used for training. Even though this method is not Bayesian, it does make use of all possible infor-
mation (in terms of available observations) to train the neural network and estimate the unknown standard
deviation. Obviously, the larger the training set and its range of inputs, the more accurate will the result be.

Concerning the choice of restricting to Gaussian forecasts, its advantage is essentially in the fact that the
AR cost function is analytically tractable. However, this might not be the best choice when the distribution
of outputs is skewed. In that case, this method must be understood as estimating the optimal (in the sense
of trade-off between accuracy and reliability) normal distribution for the available data. Future works will
explore the extension of the method to non-Gaussian distributions.

We have shown experiments with synthetic data sets (for one- and five-dimensional examples), that demon-
strate how our method is able to learn the underlying functional dependence of the standard deviation,
which is, in real-world problems, unknown. These experiments also show how the method deals with cases
when the underlying deterministic model contains a systematic error. In this cases, the reliability diagram
represents a sanity check, indicating the presence of systematic errors. Indeed, it is understood that any
problem with the underlying deterministic model is ultimately reflected in the reliability diagram.

Finally we have applied the method to two recently developed models, relevant to space weather: the esti-
mation of the electron density in the plasmasphere (section 4) and of the chorus wave amplitude (section 5).
In both cases, we use as inputs the same inputs employed in the original model. The probabilistic forecast
produced with our method show excellent reliability diagrams, pinpointing the lack of a systematic bias in
the original models.

Our code is available on the website www.mlspaceweather.org and zenodo.org (doi:10.5281/zenodo.
1485608) and we encourage the space weather community to produce probabilistic forecasts based on deter-
ministic models, using our method. Finally, we point out that an interesting future extension to this method
would be the case of multivariate outputs (in contrast to scalars). In that case, the definitions of CRPS and
RS will need to account for covariances between variables.
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